Prof. Dr. O. Anatole von Lilienfeld
Simon León Krug, Danish Khan, O. Anatole von Lilienfeld
Alchemical harmonic approximation based potential for all iso-electronic diatomics: Foundational baseline for Δ-machine learning
Danish Khan, O. Anatole von Lilienfeld
Generalized convolutional many body distribution functional representations
Igor Poltavsky, Anton Charkin-Gorbulin, Mirela Puleva, Gregory Cordeiro Fonseca, Ilyes Batatia , Nicholas J. Browning, Stefan Chmiela, Mengnan Cui, J. Thorben Frank, Stefan Heinen, Bing Huang, Silvan Käser, Adil Kabylda, Danish Khan, Carolin Müller, Alastair J. A. Price, Kai Riedmiller, Kai Töpfer, Tsz Wai Ko, Markus Meuwly, Matthias Rupp, Gabor Csanyi, O. Anatole von Lilienfeld, Johannes T. Margraf, Klaus-Robert Müller, Alexandre Tkatchenko
Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Model Analysis in the TEA Challenge 2023
Igor Poltavsky, Mirela Puleva, Anton Charkin-Gorbulin, Gregory Cordeiro Fonseca, Ilyes Batatia, Nicholas J. Browning, Stefan Chmiela, Mengnan Cui, J. Thorben Frank, Stefan Heinen, Bing Huang, Silvan Käser, Adil Kabylda, Danish Khan, Carolin Müller, Alastair J. A. Price, Kai Riedmiller, Kai Töpfer, Tsz Wai Ko, Markus Meuwly, Matthias Rupp, Gabor Csanyi, O. Anatole von Lilienfeld, Johannes T. Margraf, Klaus-Robert Müller, Alexandre Tkatchenko
Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Molecular Dynamics in the TEA Challenge 2023
Simon León Krug, O. Anatole von Lilienfeld