Leonard Hackel
Doctoral Researcher
- Rolf Niedermeier Preis for an outstanding final thesis
- Certificat of Honor as one of the best graduates in the master’s program Computer Engineering at TU Berlin
Remote sensing
big data analytics
multimodal data processing
deep learning
Kai Norman Clasen, Leonard Hackel, Tom Burgert, Gencer Sumbul, Begüm Demir, Volker Markl
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
Leonard Hackel, Kai Norman Clasen, Begüm Demir
ConfigILM: A general purpose configurable library for combining image and language models for visual question answering
Marco Corsi, Giorgio Pasquali, Chiara Pratola, Simone Tilia, Sergios-Anestis Kefalidis, Konstantinos Plas, Mariangela Pollali, Eleni Tsalapati, Myrto Tsokanaridou, Manolis Koubarakis, Kai Norman Clasen, Leonard Hackel, Jakob Hackstein, Gencer Sumbul, Begum Demir, Nicolas Longepe´
DA4DTE: DEVELOPING A DIGITAL ASSISTANT FOR SATELLITE DATA ARCHIVES
Leonard Hackel, Kai Norman Clasen, Mahdyar Ravanbakhsh, Begüm Demir
LIT-4-RSVQA: Lightweight Transformer-based Visual Question Answering in Remote Sensing
Tom-Lukas Breitkopf, Leonard W. Hackel, Mahdyar Ravanbakhsh, Anne-Karin Cooke, Sandra Willkommen, Stefan Broda, Begüm Demir
Advanced Deep Learning Architectures for Accurate Detection of Subsurface Tile Drainage Pipes from Remote Sensing Images
DA4DTE: Pioneering Satellite Data Archives with a Revolutionary Digital Assistant
Demonstrator Precursor Digital Assistant Interface for Digital Twin Earth (DA4DTE) is a project by the European Space Agency (ESA) that aims to simplify the usage of satellite data archives. A BIFOLD research group led by Prof. Dr. Begüm Demir has been pivotal in developing three of the four search engines featured in the digital assistant.