Banner Banner

Dr. Stefan Chmiela

Icon

Technische Universität Berlin
Machine Learning for Molecular Simulation in Quantum Chemistry

Marchstraße 23, 10587 Berlin
https://www.tu.berlin/en/ml

Stefan Chmiela BIFOLD research group lead
© Chmiela

Dr. Stefan Chmiela

Research Junior Group Lead

Dr. Stefan Chmiela leads the Research Training Group "Machine learning for molecular simulations in quantum chemistry".

2019 Chorafas-Award

  • Hilbert space learning methods
  • Learning from structured data
  • Data efficient learning with explicit prior knowledge constraints

J. Thorben Frank, Stefan Chmiela, Klaus-Robert Müller, Oliver T. Unke

Euclidean Fast Attention: Machine Learning Global Atomic Representations at Linear Cost

December 11, 2024
https://doi.org/10.48550/arXiv.2412.08541

Adil Kabylda, J. Thorben Frank, Sergio Suarez Dou, Almaz Khabibrakhmanov, Leonardo Medrano Sandonas, Oliver T. Unke, Stefan Chmiela, Klaus-Robert Müller, Alexandre Tkatchenko

Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields

October 08, 2024
https://doi.org/10.26434/chemrxiv-2024-bdfr0

Igor Poltavsky, Anton Charkin-Gorbulin, Mirela Puleva, Gregory Cordeiro Fonseca, Ilyes Batatia , Nicholas J. Browning, Stefan Chmiela, Mengnan Cui, J. Thorben Frank, Stefan Heinen, Bing Huang, Silvan Käser, Adil Kabylda, Danish Khan, Carolin Müller, Alastair J. A. Price, Kai Riedmiller, Kai Töpfer, Tsz Wai Ko, Markus Meuwly, Matthias Rupp, Gabor Csanyi, O. Anatole von Lilienfeld, Johannes T. Margraf, Klaus-Robert Müller, Alexandre Tkatchenko

Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Model Analysis in the TEA Challenge 2023

September 27, 2024
https://doi.org/10.26434/chemrxiv-2024-ctdm3

Igor Poltavsky, Mirela Puleva, Anton Charkin-Gorbulin, Gregory Cordeiro Fonseca, Ilyes Batatia, Nicholas J. Browning, Stefan Chmiela, Mengnan Cui, J. Thorben Frank, Stefan Heinen, Bing Huang, Silvan Käser, Adil Kabylda, Danish Khan, Carolin Müller, Alastair J. A. Price, Kai Riedmiller, Kai Töpfer, Tsz Wai Ko, Markus Meuwly, Matthias Rupp, Gabor Csanyi, O. Anatole von Lilienfeld, Johannes T. Margraf, Klaus-Robert Müller, Alexandre Tkatchenko

Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces: Molecular Dynamics in the TEA Challenge 2023

September 27, 2024
https://doi.org/10.26434/chemrxiv-2024-jhm5l

J. Thorben Frank, Oliver T. Unke, Klaus-Robert Müller, Stefan Chmiela

A Euclidean transformer for fast and stable machine learned force fields

August 06, 2024
https://www.nature.com/articles/s41467-024-50620-6

News
Machine Learning| Aug 06, 2024

Simulation of quantum systems

Researchers from the Berlin Institute for the Foundations of Learning and Data (BIFOLD) at TU Berlin and Google DeepMind have now developed a novel machine learning algorithm which enables highly accurate simulations of the dynamics of a single or multiple molecule on long time-scales.

News
Machine Learning| Jan 26, 2023

Simulation of complex quantum systems

An international team of BIFOLD scientists together with scientists from the Université du Luxembourg and Google has now successfully developed a machine learning algorithm to simulate complex quantum system.

Machine Learning| May 13, 2020

Machine Learning meets Quantum Physics

BIFOLD researchers contributed to an in-depth referenced work on the physics-based machine learning techniques that model electronic and atomistic properties of matter.